
Computer Architecture Lab at

Michael K. Papamichael, Eric S. Chung,
James C. Hoe, Babak Falsafi, Ken Mai

papamix@cs.cmu.edu, {echung, jhoe, babak, kenmai}@ece.cmu.edu

PROTOFLEX

Our work in this area has been supported
in part by NSF, IBM, Intel, and Xilinx.

29-Jan-2010

CALCM Computer Architecture Lab Carnegie Mellon

Fast Instrumentation using FPGAs

• Accelerate sampling-based timing simulations
• Uncore modeling
• Add timing through backpressure

Instrumentation
Components

Functional
Trace-Driven CMP
Cache Model

Network-on-Chip
Model (FIST)

DRAM Controller
Model (future)

Functional
Trace-Driven
Branch Predictor Model

BlueSPARC
(16-cpu)

2

CALCM Computer Architecture Lab Carnegie Mellon

Outline

Instrumentation
Components

Functional CMP
Cache Model

Network-on-Chip
Model (FIST)

DRAM Controller
Model (future)

Functional Branch
Predictor Model

BlueSPARC
(16-cpu)

• BlueSPARC (1-slide overview)

• Network Modeling (FIST)

3

CALCM Computer Architecture Lab Carnegie Mellon

BlueSPARC Simulator

BEE2 XUPv5

• Open-source HW-based Full-system Functional Simulator

– Models 16-cpu UltraSPARC III server

– Can boot OS, run commercial apps

– Publicly released under GNU GPL v2

– Visit www.ece.cmu.edu/~protoflex

• Interesting BlueSPARC Facts

– Implemented on BEE2 and XUPv5 FPGA platforms

4

CALCM Computer Architecture Lab Carnegie Mellon

BlueSPARC Simulator

MIPS

0 10 20 30 40 50

Simics

BlueSPARC

• Open-source HW-based Full-system Functional Simulator

– Models 16-cpu UltraSPARC III server

– Can boot OS, run commercial apps

– Publicly released under GNU GPL v2

– Visit www.ece.cmu.edu/~protoflex

• Interesting BlueSPARC Facts

– Implemented on BEE2 and XUPv5 FPGA platforms

– Written in Bluespec HDL

– Enables fast instrumentation (37x speedup over SW on avg.)

5

CALCM Computer Architecture Lab Carnegie Mellon

Outline

Instrumentation
Components

Functional CMP
Cache Model

Network-on-Chip
Model (FIST)

DRAM Controller
Model (future)

Functional Branch
Predictor Model

BlueSPARC
(16-cpu)

• BlueSPARC (1-slide overview)

• Network Modeling (FIST)

6

CALCM Computer Architecture Lab Carnegie Mellon

Network Simulation Goals

• Avoid building actual Network-on-Chip in FPGA
– Buffered NoC w/ multiple VCs very complex

– Limited size of simulated network

• Stay within acceptable error margin

• Trade-off complexity vs. fidelity

• Simulate variety of network topologies

• Be fast to keep up with BlueSPARC

Datapath Width 3x3 4x4 5x5 6x6 7x7 8x8
32-bit 43% 76% 120% 172% 234% 306%
64-bit 63% 112% 175% 253% 344% 449%

128-bit 101% 180% 282% 405% 552% 721%
256-bit 177% 315% 493% 709% 965% 1261%

Mesh NoC LUT Usage on Xilinx LX110T*

*Results obtained through synthesis of open source NoC Router RTL found at http://nocs.stanford.edu/router.html
7

CALCM Computer Architecture Lab Carnegie Mellon

What is a NoC?

R

R

R

R R

R R

R R

NN

N

N

N

NN

N N

• Abstract View of NoC

– Set of links connected by routers

– Buffers may exist at inputs/outputs

• Mesh Example (Input-Queued)

N

R

R

R

R R

RR

8

CALCM Computer Architecture Lab Carnegie Mellon

In
p

u
ts

Outputs

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

La
te

n
cy

(c
yc

le
s)

Load (%)
Independent & Identically Distributed Uniform Traffic

Average Packet Latency vs Load for varying VOQ Sizes

VOQ depth=1
VOQ depth=2
VOQ depth=4
VOQ depth=8
VOQ depth=16
Input Queueing (HOL)

Key Idea

• Router equiv. to crossbar w/ characteristic delay-load curves

• Known curves for given configuration & traffic pattern

N

R

Delay-Load Curve Example for Buffered Crossbar

9

CALCM Computer Architecture Lab Carnegie Mellon

N

N

N

N

N

N

FIST Approach

• Treat each hop as a delay vs. load curve
– Trade-off between model complexity and fidelity

• Keep track of load at each node

R

R

R

R

R

R
N

N

N

R

R

R

10

CALCM Computer Architecture Lab Carnegie Mellon

N

N

N

N

N

NN

N

N

FIST in Action
• Route packet from source to destination

– Deterministic routing (e.g. dimensional routing): easy

– Non-deterministic routing: (e.g. adaptive routing): harder

• Add up the delays for each traversed router
– Index delay-load curves using current load at each router

11

R

R

R

R

R

R

R

R

R

S

D

packet

delay

CALCM Computer Architecture Lab Carnegie Mellon

Fe
e

d
b

ac
k?

Network Sim. Usage Scenarios

Get Delay-Load Curves Use Curves

12

• Synthetic/Independent Network Studies (e.g. BookSim)

– Characterize network (e.g. load-latency, saturation throughput)

– Study asymptotic behavior network

– Use synthetic traffic patterns & “absolute virtual time”

• Full-system studies w/ networks (e.g. GEMS+Garnet)

– Model network within a broader simulated system

– Assign delay to each packet traversing the network

– Traffic gen. by real workloads (often self-throttling)

CALCM Computer Architecture Lab Carnegie Mellon

FPGA-based FIST Architecture Draft

Packet
Descriptors

Packet

Arrivals

Routing Logic

Router Elements

Pick
routers

Src, Dest

Size, QoS

Load/Delay
updates

LoadUpdate

Loads

Average

Delay

Calculate
Delay

Packet

Delay

Router

Bitmask

Router Loads/Delays
only for non-deterministic routing

Router Loads/Delays

13

CALCM Computer Architecture Lab Carnegie Mellon

Implementation Issues

• How do you obtain delay-load router curves?
– Precompute using cycle-accurate SW-based simulator

• How many curves?
– One curve per router

– One per traffic pattern

– One per router input and/or output

• Are curves dynamically updated? How often?
– Profile traffic and use same curves throughout entire workload

– Detect traffic pattern and pick out of existing set of curves

– Run SW-based simulator on the side and update periodically

• How do you keep track of load at each router?
– Average injection rate at each router over window of N cycles

– Amount of buffering in the network determines window size (N)
14

CALCM Computer Architecture Lab Carnegie Mellon

Software-based Prototype

• C++ implementation of FIST scheme (~1000 L)
– Used for experimentation and validation

– Can be easily ported to HW

• Reference Network Simulator: BookSim
– Looked at variety of Mesh- and Torus-based networks

– Traffic Patterns: Uniform Random, Transpose, Bit Complement,
Bit Reverse, Shuffle, Tornado, Neighbor, Random Permutation

• One Curve per Router
– 50 load-latency pairs per router

• Usage / Experimental Methodology
1. Run BookSim experiment and get delay-load curves per router

2. Plug curves into FIST & run experiment w same traffic

3. Compare results & fine tune
15

CALCM Computer Architecture Lab Carnegie Mellon

Accuracy Results I

0

5

10

15

20

25

30

35

2 4 6 8
1

0
1

2
1

4
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0
3

2
3

4
3

6
3

8
4

0
4

2
4

4
4

6
4

8
5

0
5

2
5

4
5

6
5

8
6

0
6

2
6

4
6

6
6

8
7

0
7

2
7

4
7

6
7

8
8

0
8

2
8

4
8

6
8

8
9

0
9

2
9

4
9

6
9

8
1

0
0

Random Uniform (BookSim) Random Uniform (FIST)

Neighbor (BookSim) Neighbor (FIST)

Random Permutation (BookSim) Random Permutation (FIST)

Bit Complement (BookSim) Bit Complement (FIST)

L
a

te
n

c
y
 (

in
 c

y
c
le

s
)

Load / Injection Rate (percentage)

4x4 Mesh, 1 Flit/Packet, 16-Flit VC Buffers

NeighboPermutBit

16

CALCM Computer Architecture Lab Carnegie Mellon

Accuracy Results II
2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

9
0

9
2

9
4

9
6

9
8

1
0

0

Random Uniform (BookSim) Random Uniform (FIST)

Neighbor (BookSim) Neighbor (FIST)

Random Permutation (BookSim) Random Permutation (FIST)

Bit Complement (BookSim) Bit Complement (FIST)

L
a

te
n

c
y
 (

in
 c

y
c
le

s
)

Load / Injection Rate (percentage)

4x4 Mesh, 20 Flit/Packet, 64-Flit VC Buffers

0

20

40

60

80

100

120

17

CALCM Computer Architecture Lab Carnegie Mellon

Performance

• Performance/Complexity Trade-Off

10K

100K

1M

10M

100M

SW FIST

HW FIST
(estimated)

SW NoC Sims

(e.g. BookSim)

Complexity / Level of Detail

S
p

e
e

d
 (

p
a
c
k
e

ts
/s

e
c
)

Packets generated by

BlueSPARC (@50-60 MIPS)

18

CALCM Computer Architecture Lab Carnegie Mellon

Research Challenges

• Traffic pattern not always known or well defined

– Maybe OK to assume some similar traffic pattern

– Run SW sim on the side & dynamically update curves (“sampling”)

– Detect traffic and pick out of existing curves (machine learning?)

• Finding path in non-deterministic routing

– Abstract away actual path. Only care about # hops.

• Short-term transient effects hard to capture

– Cannot model fine-grain packet interactions

• How good is good enough?

– For full-system simulations previous work settles with <10% error.

– What is the acceptable error margin for the network component?
19

CALCM Computer Architecture Lab Carnegie Mellon

Conclusions & Future Directions

• The devil is in the details
– Easy to get the trend right

– Hard to get the details right

• Majority of existing NoCs keep it simple
– E.g. no fancy routing, most stick with dimension ordering (DOR)

– NoC shares power budget/die area with other components

Conclusions

Future Work & Directions

• Deal with unknown/dynamic traffic patterns

• Non-deterministic routing (e.g. adaptive routing)

• Augment instrum. components with timing info
20

Thanks! Any questions?
papamix@cs.cmu.edu
http://www.ece.cmu.edu/~protoflex

