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Fast Instrumentation using FPGAs

• Accelerate sampling-based timing simulations
• Uncore modeling
• Add timing through backpressure
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• BlueSPARC (1-slide overview)

• Network Modeling (FIST)
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BlueSPARC Simulator

BEE2 XUPv5

• Open-source HW-based Full-system Functional Simulator

– Models 16-cpu UltraSPARC III server

– Can boot OS, run commercial apps

– Publicly released under GNU GPL v2

– Visit www.ece.cmu.edu/~protoflex

• Interesting BlueSPARC Facts

– Implemented on BEE2 and XUPv5 FPGA platforms
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BlueSPARC Simulator
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BlueSPARC

• Open-source HW-based Full-system Functional Simulator

– Models 16-cpu UltraSPARC III server

– Can boot OS, run commercial apps

– Publicly released under GNU GPL v2

– Visit www.ece.cmu.edu/~protoflex

• Interesting BlueSPARC Facts

– Implemented on BEE2 and XUPv5 FPGA platforms

– Written in Bluespec HDL

– Enables fast instrumentation (37x speedup over SW on avg.)
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Network Simulation Goals

• Avoid building actual Network-on-Chip in FPGA
– Buffered NoC w/ multiple VCs very complex

– Limited size of simulated network

• Stay within acceptable error margin

• Trade-off complexity vs. fidelity

• Simulate variety of network topologies

• Be fast to keep up with BlueSPARC

Datapath Width 3x3 4x4 5x5 6x6 7x7 8x8
32-bit 43% 76% 120% 172% 234% 306%
64-bit 63% 112% 175% 253% 344% 449%

128-bit 101% 180% 282% 405% 552% 721%
256-bit 177% 315% 493% 709% 965% 1261%

Mesh NoC LUT Usage on Xilinx LX110T*

*Results obtained through synthesis of open source NoC Router RTL found at http://nocs.stanford.edu/router.html 
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What is a NoC?
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• Abstract View of NoC

– Set of links connected by routers

– Buffers may exist at inputs/outputs

• Mesh Example (Input-Queued)
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Key Idea

• Router equiv. to crossbar w/ characteristic delay-load curves

• Known curves for given configuration & traffic pattern
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FIST Approach

• Treat each hop as a delay vs. load curve
– Trade-off between model complexity and fidelity

• Keep track of load at each node
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FIST in Action
• Route packet from source to destination 

– Deterministic routing (e.g. dimensional routing): easy

– Non-deterministic routing: (e.g. adaptive routing): harder

• Add up the delays for each traversed router
– Index delay-load curves using current load at each router
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Network Sim. Usage Scenarios

Get Delay-Load Curves Use Curves
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• Synthetic/Independent Network Studies (e.g. BookSim)

– Characterize network (e.g. load-latency, saturation throughput)

– Study asymptotic behavior network

– Use synthetic traffic patterns & “absolute virtual time”

• Full-system studies w/ networks (e.g. GEMS+Garnet)

– Model network within a broader simulated system

– Assign delay to each packet traversing the network

– Traffic gen. by real workloads (often self-throttling)
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FPGA-based FIST Architecture Draft
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Implementation Issues

• How do you obtain delay-load router curves?
– Precompute using cycle-accurate SW-based simulator

• How many curves?
– One curve per router

– One per traffic pattern

– One per router input and/or output

• Are curves dynamically updated? How often?
– Profile traffic and use same curves throughout entire workload

– Detect traffic pattern and pick out of existing set of curves

– Run SW-based simulator on the side and update periodically

• How do you keep track of load at each router?
– Average injection rate at each router over window of N cycles

– Amount of buffering in the network determines window size (N)
14
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Software-based Prototype

• C++ implementation of FIST scheme (~1000 L)
– Used for experimentation and validation

– Can be easily ported to HW

• Reference Network Simulator: BookSim
– Looked at variety of Mesh- and Torus-based networks

– Traffic Patterns: Uniform Random, Transpose, Bit Complement, 
Bit Reverse, Shuffle, Tornado, Neighbor, Random Permutation

• One Curve per Router
– 50 load-latency pairs per router

• Usage / Experimental Methodology
1. Run BookSim experiment and get delay-load curves per router

2. Plug curves into FIST & run experiment w same traffic

3. Compare results & fine tune
15
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Accuracy Results I
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Accuracy Results II
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Performance

• Performance/Complexity Trade-Off
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Research Challenges

• Traffic pattern not always known or well defined

– Maybe OK to assume some similar traffic pattern

– Run SW sim on the side & dynamically update curves (“sampling”)

– Detect traffic and pick out of existing curves (machine learning?) 

• Finding path in non-deterministic routing 

– Abstract away actual path. Only care about # hops.

• Short-term transient effects hard to capture

– Cannot model fine-grain packet interactions

• How good is good enough?

– For full-system simulations previous work settles with <10% error.

– What is the acceptable error margin for the network component?
19
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Conclusions & Future Directions

• The devil is in the details
– Easy to get the trend right

– Hard to get the details right

• Majority of existing NoCs keep it simple
– E.g. no fancy routing, most stick with dimension ordering (DOR)

– NoC shares power budget/die area with other components

Conclusions

Future Work & Directions

• Deal with unknown/dynamic traffic patterns

• Non-deterministic routing (e.g. adaptive routing)

• Augment instrum. components with timing info
20



Thanks! Any questions?
papamix@cs.cmu.edu
http://www.ece.cmu.edu/~protoflex


